


‭Platform Maturity Levels‬
‭What is a platform?‬

‭A platform is a‬‭complete environment‬‭able to run all kinds of applications.‬
‭Modern platform these days is based on containers and‬‭Kubernetes‬‭(or‬‭OpenShift‬‭)‬
‭running in the cloud, on on-premises hardware or in hybrid environments.‬
‭To provide necessary features, multiple‬‭Cloud Native‬‭technologies are used to‬
‭accomplish high reliability, security and scalability.‬
‭Together with Platform Engineering and‬‭DevOps‬‭practices, the platform built within the‬
‭organization makes it possible to develop and manage almost any software in a‬
‭cost-effective manner.‬



‭What are Platform Maturity Levels™?‬

‭The‬‭five levels‬‭are distinguished stages of implementation of a specific subset of‬
‭features. These features increase capabilities of the platform in an‬‭incremental‬‭manner.‬
‭Each level includes strategies for achieving a specific level of maturity to provide more‬
‭confidence in the platform and allows for running more critical software.‬

‭Why is this level-based approach better?‬

‭This approach is more‬‭evolutionary‬‭rather than revolutionary. It’s more‬‭practical‬‭and‬
‭takes into account the time needed for learning new tools and processes.‬
‭It also allows the platform's capabilities to be better aligned with the‬‭organization's‬
‭context‬‭(e.g. existing software, policies, restrictions, etc.).‬
‭Each level can introduce or extend the use of particular practice or technology (e.g.‬
‭GitOps, Zero Trust Environment, Progressive Delivery, Chaos Engineering etc.) at a‬
‭different advancement level.‬



‭Level 1 - Extended PoC‬
‭Provide a good enough starting point for experimentation.‬

‭The sooner the platform is available, the better. Start with rudimentary features to‬
‭enable first applications to leverage the speed and flexibility of Kubernetes.‬
‭Use this level only as a starting point to experiment and test the possibilities. Be‬
‭prepared for a rather reactive approach to problems and manual actions to fix them.‬
‭The time will come for more advanced means of improvement.‬

‭Requirements‬

‭☑‬ ‭A budget for the work to set up the platform and to deploy first applications‬
‭☑‬ ‭Access to the cloud with Kubernetes service or available on-prem resources‬
‭☑‬ ‭A team with skills for setting up the platform (greater for on-prem environments)‬

‭For whom‬

‭➔‬ ‭Every organization starting the journey (non-prod!)‬

‭Benefits‬

‭★‬ ‭Enables developers to learn and use Kubernetes and containers‬
‭★‬ ‭Enables more advanced developers to leverage already built and used container‬

‭images in a scale (previously locally)‬
‭★‬ ‭Enables operations team to learn and discover how to create more mature‬

‭platform with the available infrastructure (cloud providers or on-prem)‬
‭★‬ ‭Allows for flexibility of adding more advanced options (i.e. additional products or‬

‭services enhancing the platform features) before running real production‬
‭workloads‬

‭★‬ ‭Development and operations teams gain more experience‬

‭Do‬

‭+‬ ‭Choose fast paths, even if they are now considered imperfect‬
‭+‬ ‭Find and encourage technology enthusiasts to participate‬
‭+‬ ‭Run your applications to align the platform use to the context‬

‭Don’t‬

‭-‬ ‭Implement more advanced features (e.g. RBAC, GitOps, Persistent Volumes)‬
‭-‬ ‭Focus on scalability or security‬
‭-‬ ‭Automate processes of building container images, delivery or platform‬

‭provisioning‬



‭Level 2 - Basic‬
‭Discover useful features and explore further.‬

‭Let people continue to learn while the platform is improved and more features are‬
‭added.‬
‭A small number of non-critical, stateless applications may run to prove the usability and‬
‭benefits of using the new approach.‬

‭Requirements‬

‭☑‬ ‭A small number of applications is ready for first production‬
‭☑‬ ‭Basic roadmap with a set of applications to run on the platform‬
‭☑‬ ‭Permission to learn and experiment with the delivery process‬
‭☑‬ ‭Selected most important components (i.e. cloud provider, Kubernetes‬

‭distribution, cluster architecture)‬
‭☑‬ ‭Confirmed (or disconfirmed) usability of the new approach for the company -‬

‭decision to move forward or stop and analyze‬

‭For whom‬

‭➔‬ ‭Every organization that wants to build more mature and professional platform‬
‭➔‬ ‭Companies (e.g. startups) choosing to make non-critical services available to‬

‭clients‬

‭Benefits‬

‭★‬ ‭Increased security rules to protect the applications and the platform‬
‭★‬ ‭Increased visibility of platform performance and operations‬
‭★‬ ‭Faster and more frequent deployments with rollbacks‬
‭★‬ ‭Reduced response time and handle peak traffic with manual scaling‬
‭★‬ ‭Enable developers to use of Kubernetes and containers‬
‭★‬ ‭Ready for non-critical production workloads (small scale, small risk, stateless)‬

‭Do‬

‭+‬ ‭Choose the necessary services or products (Kubernetes distribution, logging,‬
‭identity)‬

‭+‬ ‭Address doubts about platform capabilities with open communication‬
‭+‬ ‭Implement basic security rules‬

‭Don’t‬

‭-‬ ‭Force migration of existing, non-containerized applications‬
‭-‬ ‭Optimize infrastructure costs (yet)‬
‭-‬ ‭Standardize and unify delivery processes‬



‭Level 3 - Advanced‬
‭Learn and improve using reliable data.‬

‭The first semi-critical applications can run on in production. It's time to rely on the data‬
‭collected on the platform to improve security, simplify troubleshooting, and reduce‬
‭infrastructure costs.‬
‭At this level, more experience is required to leverage the potential of Kubernetes and‬
‭Cloud Native projects.‬

‭Requirements‬

‭☑‬ ‭Some apps work in prod to prove the readiness of platform‬
‭☑‬ ‭Some standards have emerged (delivery)‬
‭☑‬ ‭More skilled platform team(s)‬

‭For whom‬

‭➔‬ ‭Preparing for more critical use‬
‭➔‬ ‭More security required‬
‭➔‬ ‭Availability becomes more critical‬

‭Benefits‬

‭★‬ ‭More reliable platform (at least 99.9%)‬
‭★‬ ‭Reduced risk of data leaks‬
‭★‬ ‭Possible to scale both workloads and platform‬
‭★‬ ‭Optimized utilization of resources‬
‭★‬ ‭More people trust the provisioned platform‬

‭Do‬

‭+‬ ‭Start implementing best practices in code (security rules, delivery pipelines, etc.)‬
‭+‬ ‭Create a dedicated team for managing the platform‬
‭+‬ ‭Improve platform capabilities based on data‬

‭Don’t‬

‭-‬ ‭Force GitOps for all processes‬
‭-‬ ‭Delegate platform security to a dedicated team‬
‭-‬ ‭Run stateful applications on the platform (yet)‬



‭Level 4 - Professional‬
‭Manage platform with an “Everything as Code” approach.‬

‭The platform is now fully automated and improvements are being implemented in code‬
‭(GitOps).‬
‭More proactive and automated measures are being used to improve application‬
‭reliability, scalability and address security threats.‬

‭Requirements‬

‭☑‬ ‭Large scale to justify higher costs‬
‭☑‬ ‭Dedicated platform team or teams to manage the platform‬

‭For whom‬

‭➔‬ ‭Large scale apps‬
‭➔‬ ‭Stateful services‬
‭➔‬ ‭Compliance standards requirements (e.g. GDPR, PCI DSS, HIPAA)‬

‭Benefits‬

‭★‬ ‭More reliable platform (at least 99.99%)‬
‭★‬ ‭Rapid delivery of more secure and reliable apps‬
‭★‬ ‭Faster and optimized scaling capabilities‬
‭★‬ ‭Infrastructure costs under control and available for optimization‬
‭★‬ ‭Significantly reduced risks of data leaks and break-ins‬
‭★‬ ‭Platform viewed internally as an essential service‬

‭Do‬

‭+‬ ‭Start treating the platform as an internal product‬
‭+‬ ‭Tighten platform security rules‬
‭+‬ ‭Improve platform capabilities based on data‬

‭Don’t‬

‭-‬ ‭Announce the platform’s SLA (yet)‬
‭-‬ ‭Stop people from testing and experimenting (in safe environments)‬
‭-‬ ‭Rely on a single infrastructure provider (or datacenter)‬



‭Level 5 - Expert‬
‭Remove bottlenecks and improve continuously.‬

‭The platform is ready for the most critical applications. It is continuously improved and‬
‭offered as a key in-house product.‬

‭Requirements‬

‭☑‬ ‭Organization's strategy to include continuous development and maintenance of‬
‭the platform (software costs, people)‬

‭For whom‬

‭➔‬ ‭Highest requirements for platform security, reliability and cost effectiveness‬

‭Benefits‬

‭★‬ ‭Implemented Zero Trust Environment‬
‭★‬ ‭Platform as a product with defined SLA‬
‭★‬ ‭Capabilities to run any type of workloads (stateless, stateful, machine learning,‬

‭serverless)‬
‭★‬ ‭Detailed insight into the cost of operating the platform and application‬
‭★‬ ‭High confidence in the platform's capabilities and reliability‬

‭Do‬

‭+‬ ‭Prepare and announce the platform’s SLA‬
‭+‬ ‭Receive the official confirmation of platform compliance with security standards‬
‭+‬ ‭Encourage people to run all their workloads on the platform‬

‭Don’t‬

‭-‬ ‭Stop improving the platform‬



‭Contact‬

‭💡 Need more details?‬
‭↗️ Need help getting to the next level?‬

‭Tomasz Cholewa‬
‭DevOps Architect, Trainer, Consultant‬

‭Feel free to reach out at‬‭tomasz@cloudowski.com‬‭to discuss details.‬

mailto:tomasz@cloudowski.com



